Compact Dual Block AES core on FPGA for CCM Protocol

João Carlos C. Resende Ricardo Chaves
Outline

- Introduction & Motivation
 - Digital Security Today
 - The AES Block Cipher
 - The CCMP Encryption mode

- State of the Art in AES implementations on FPGA

- Proposed Architecture: Description and Implementation
 - Combining Solutions
 - Improved Solution

- Result Analysis
 - Resource requirements and performance
 - Comparison with related State of the Art

- Conclusions
Digital Security Today

Encryption

Authentication

Integrity

Non-repudiation
Digital Security Today

- Ciphers
- Hash functions
- Higher Lvl Protocols

- Encryption
- Authentication
- Integrity
- Non-repudiation
Digital Security Today

- Ciphers
- Hash functions
- Higher Lvl Protocols
- Ciphers + Hash
 - 2 cores
Digital Security Today

- Ciphers
- Hash functions
- Higher Lvl Protocols

- Ciphers + Hash
 - 2 cores

- Ciphers + Cipher Modes
 - CCM
 - GCM

Encryption
Authentication
Integrity
Non-repudiation
Cipher Modes (more easily embeddable & efficient)

- It specifies the order in which blocks are encryption
- AES-CCM most common:
 - Advanced Encryption
 - Standard
 - Counter with
 - CBC-MAC
• **Cipher Modes** *(more easily embeddable & efficient)*
 - It specifies the order in which blocks are encryption
 - AES-CCM most common:
 - Advanced Encryption Standard
 - Counter with CBC-MAC
 - Used in:
 - IEEE 802.11 (WLAN)
 - IEEE 802.16 (Broadband Wi-Fi)
 - IPSec
 - TLS 1.2
The AES Block Cipher

- Official NIST standard since 2001
 - FIPS 197
- 128-bit block cipher
- Logic or Table implementation
- Shared structure for Enc/Dec
- Input keys of 128, 192 or 256 bits
 - 10, 12 or 14 iterative rounds
The Counter with CBC-MAC Protocol

- Original submission 2002
 - RFC 3610

- Encryption; Authentication; Integrity for any block cipher
 - Typically AES
The Counter with CBC-MAC Protocol

- Two stream chains
 - **Counter**: non-feedback mode
 Counter tags for each independent Plaintext block
 - **CBC-MAC**: feedback mode
 Chained and dependent Plaintext encryption

- Cipher’s decryption is not required
- Additional Shared Data for extra security
Outline

- Introduction & Motivation
 - Digital Security Today
 - The AES Block Cipher
 - The CCMP Encryption mode

- State of the Art in AES implementations on FPGA

- Proposed Architecture: Description and Implementation
 - Combining Solutions
 - Improved Solution

- Result Analysis
 - Resource requirements and performance
 - Comparison with related State of the Art

- Conclusions
Chodowiec and Gaj [2003]
- ShiftRows performed by addressable Shift Register
- SubBytes performed by BRAM-based S-Boxes
- MixColumns performed by logic
State of the Art in AES implementations on FPGA

- Rouvroy et al. [2004]
 - ShiftRows performed by Shift Register
 - SubBytes & MixColumns performed by BRAM-based T-Boxes
 - Extra InvS-Box in BRAM for decryption
 - Embedded Key Scheduler
State of the Art in AES implementations on FPGA

- Drimer et al. [2010]
 - ShiftRows performed by Logic Shift Register
 - SubBytes & MixColumns by BRAM based T-Boxes
 - XOR operations performed by Cascade of 4 DSPs
 - 8-stage Pipeline for maximum clock frequency
Outline

- Introduction & Motivation
 - Digital Security Today
 - The AES Block Cipher
 - The CCMP Encryption mode
- State of the Art in AES implementations on FPGA
- Proposed Architecture: Description and Implementation
 - Combining Solutions
 - Improved Solution
- Result Analysis
 - Resource requirements and performance
 - Comparison with related State of the Art
- Conclusions
Proposed Architecture: Description and Implementation

- Proposed Structure
 - Combine solutions from State of the Art
 - Improve efficiency through:
 - Removal of DSPs
 - Most use of LUT6 technology
 - Improved Scheduling/Pipelining
 - Minimize Critical Path
Proposed Architecture: Description and Implementation

- Step-by-step components
 - Initial Whitening Keys
Proposed Architecture: Description and Implementation

- **Step-by-step components**
 - Initial Whitening Keys
 - Shift Register for AES

![Diagram of Proposed Architecture](attachment:image.png)
Proposed Architecture: Description and Implementation

- Step-by-step components
 - Initial Whitening Keys
 - Shift Register for AES
 - BRAM based T-Boxes
Proposed Architecture: Description and Implementation

- **Step-by-step components**
 - Initial Whitening Keys
 - Shift Register for AES
 - BRAM based T-Boxes
 - AddRoundKey and Feedback
Proposed Architecture: Description and Implementation

- Step-by-step components
 - Initial Whitening Keys
 - Shift Register for AES
 - BRAM based T-Boxes
 - AddRoundKey and Feedback
 - Output Block Addition

// Immediate load of new Block (Counter)
Proposed Architecture:
Description and Implementation

• Scheduling
 – Each block takes 9 cycles to process & re-store.
 – There are 2 blocks = 8 Words (32 bits)
 – 1 dead cycle = 1 register too many
Proposed Architecture: Description and Implementation

- **Scheduling**
 - Each block takes 9 cycles to process & re-store.
 - There are 2 blocks = 8 Words (32 bits)
 - 1 dead cycle = 1 register too many

Two viable solutions
Proposed Architecture: Description and Implementation

- Scheduling
 - Each block takes 9 cycles to process & re-store.
 - There are 2 blocks = 8 Words (32 bits)
 - 1 dead cycle = 1 register too many

- Removal of the SRL output register
 - Shorter propagation signal

- Each block takes 8 cycles to process & re-store.
- There are 2 blocks = 8 Words (32 bits)
- 0 dead cycles
Proposed Architecture: Description and Implementation

- Compact Double Block AES FPGA core.
 - Double Input (Counter or CBC-MAC)
 - Shift Register for Shift Rows
 - BRAM-based TBoxes
 - Output Stage with Final block addition
 - **Overlapping Input/Output cycles**
 - Critical Path = 1 Logic level + routing
 - Total of 96 LUTs + 2 BRAMs (+32 isolated FFs)
Outline

- Introduction & Motivation
 - Digital Security Today
 - The AES Block Cipher
 - The CCMP Encryption mode

- State of the Art in AES implementations on FPGA

- Proposed Architecture: Description and Implementation
 - Combining Solutions
 - Improved Solution

- Result Analysis
 - Resource requirements and performance
 - Comparison with related State of the Art

- Conclusions
Result Analysis

- **State of the Art Comparison (double block)**

<table>
<thead>
<tr>
<th>Round Structure</th>
<th>Device</th>
<th>Resources</th>
<th>Throughput</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Slices</td>
<td>BRAMs</td>
<td>DSPs</td>
</tr>
<tr>
<td>Rolled(128b)</td>
<td>V5</td>
<td>303</td>
<td>8+2</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(128b)</td>
<td>V5</td>
<td>407</td>
<td>8+2</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(128b)</td>
<td>V5</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>V5</td>
<td>107</td>
<td>2+1</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>V5</td>
<td>212</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>V6</td>
<td>70</td>
<td>2+1</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>S3</td>
<td>142</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>V5</td>
<td>123</td>
<td>2+1</td>
<td>0</td>
</tr>
<tr>
<td>Rolled(32b)</td>
<td>V6</td>
<td>115</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unrolled</td>
<td>V5</td>
<td>3579</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unrolled</td>
<td>V6</td>
<td>3121</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unrolled</td>
<td>A7</td>
<td>80</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Unrolled</td>
<td>S3</td>
<td>633</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>Unrolled</td>
<td>S3</td>
<td>731</td>
<td>1031</td>
<td></td>
</tr>
<tr>
<td>2xUnrolled</td>
<td></td>
<td>2154</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>2xRolled(128b)</td>
<td>S3</td>
<td>1041</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>
Result Analysis

<table>
<thead>
<tr>
<th></th>
<th>Slices</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Maraghy</td>
<td>303</td>
</tr>
<tr>
<td>Chaves</td>
<td>407</td>
</tr>
<tr>
<td>Bulens</td>
<td>400</td>
</tr>
<tr>
<td>Drimer w/ DSPs</td>
<td>107</td>
</tr>
<tr>
<td>Drimer w/o DSPs</td>
<td>212</td>
</tr>
<tr>
<td>This Work V5</td>
<td>70</td>
</tr>
<tr>
<td>This Work V6</td>
<td>51</td>
</tr>
<tr>
<td>This Work S3</td>
<td>142</td>
</tr>
<tr>
<td>Resende V5</td>
<td>123</td>
</tr>
<tr>
<td>Resende V6</td>
<td>115</td>
</tr>
<tr>
<td>Liu V5</td>
<td>3579</td>
</tr>
<tr>
<td>Liu V6</td>
<td>3121</td>
</tr>
<tr>
<td>de la Piedra</td>
<td>80</td>
</tr>
<tr>
<td>Lopez-Trejo ECB</td>
<td>633</td>
</tr>
<tr>
<td>Lopez-Trejo w/..</td>
<td>731</td>
</tr>
<tr>
<td>Lopez-Trejo MAC</td>
<td>1031</td>
</tr>
<tr>
<td>Lopez-Trejo Total</td>
<td>2154</td>
</tr>
<tr>
<td>Algredo-Badillo</td>
<td>1041</td>
</tr>
</tbody>
</table>
Result Analysis

<table>
<thead>
<tr>
<th></th>
<th>Efficiency [Mbps/S]</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Maraghy</td>
<td>8.75</td>
</tr>
<tr>
<td>Chaves</td>
<td>5.96</td>
</tr>
<tr>
<td>Bulens</td>
<td>5.46</td>
</tr>
<tr>
<td>Drimer w/ DSPs</td>
<td>16.45</td>
</tr>
<tr>
<td>Drimer w/o DSPs</td>
<td>8.3</td>
</tr>
<tr>
<td>This Work V5</td>
<td>24.22</td>
</tr>
<tr>
<td>This Work V6</td>
<td>30.49</td>
</tr>
<tr>
<td>This Work S3</td>
<td>4.05</td>
</tr>
<tr>
<td>Resende V5</td>
<td>8.23</td>
</tr>
<tr>
<td>Resende V6</td>
<td>8.3</td>
</tr>
<tr>
<td>Liu V5</td>
<td>1.22</td>
</tr>
<tr>
<td>Liu V6</td>
<td>1.95</td>
</tr>
<tr>
<td>de la Piedra</td>
<td>2.44</td>
</tr>
<tr>
<td>Lopez-Trejo ECB</td>
<td>1.68</td>
</tr>
<tr>
<td>Lopez-Trejo w/ CTR</td>
<td>1.45</td>
</tr>
<tr>
<td>Lopez-Trejo MAC</td>
<td>1.03</td>
</tr>
<tr>
<td>Lopez-Trejo Total</td>
<td>0.49</td>
</tr>
<tr>
<td>Algedro-Badillo</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Conclusions

• **Compact** Double Block AES core on FPGA for CCMP
 – Processing of 2 data streams
 – **51 Slices+3 BRAMs** ; 486 MHz ;
 – 1,55 Gbps ; **30,49 Mbps/Slice**

• **Improvements** (Virtex 5)
 – Smallest 32-bit structure to date
 – Most efficient AES structure in the state of the art

<table>
<thead>
<tr>
<th></th>
<th>Resources</th>
<th>Throughput</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit</td>
<td>de La Piedra “16xDSPs”</td>
<td>-12,5%</td>
<td>+770%</td>
</tr>
<tr>
<td></td>
<td>Drimer “4xDSPs”</td>
<td>-34%</td>
<td>-4%</td>
</tr>
<tr>
<td></td>
<td>Drimer “0xDSPs”</td>
<td>-67%</td>
<td>-4%</td>
</tr>
<tr>
<td>128-bit</td>
<td>El Maraghy</td>
<td>-76%</td>
<td>-36%</td>
</tr>
</tbody>
</table>
Thank you!

Questions?

Email:
joaocresende@tecnico.ulisboa.pt
ricardo.chaves@inesc-id.pt