Energy Efficient Partitioning of Dynamic Reconfigurable MRAM-FPGAs

Ali Ahari, Mojtaba Ebrahimi, Mehdi B. Tahoori
Motivation

- High leakage power in SRAM-FPGAs
 - Non-volatile technologies for FPGA configuration bits
 - Flash-based FPGAs are already in mass production

- MRAM could be potentially replaced with SRAM in configuration bits
 - Fast read
 - Low leakage power
 - Smaller footprint
 - Non-volatile
 - Immunity to soft errors

- Dynamic partial reconfiguration (DPR) is a popular area reduction method
 - Impractical for Flash- and Phase Change Memory-based FPGAs → Low endurance
 - MRAM Technology → Unlimited endurance
Problem Statement

- Write operation in MRAM has high latency and energy
 - ~5X higher latency and ~7X higher energy compared to SRAM [Oboril15TCAD]
 - Higher reconfiguration energy in MRAM-based FPGAs

- Reconfiguration energy is a major challenge in DPR-based MRAM-FPGAs

Proposal: Partitioning technique for reconfigurable MRAM-FPGAs

- Takes into account reconfiguration frequency of tasks
- Exploits entire FPGA area for implementing DPR
- Minimizes reconfigured bits → reconfiguration energy
Outline

- MRAM-FPGA
- Proposed Partitioning Technique
- Experimental Results
- Conclusions
Data stored in Magnetic Tunnel Junction (MTJ)

- Composed of two independent ferromagnetic layers: free and reference layer
- Parallel and anti-parallel orientation of two layers
 - low and high resistance → represent either logic 1 or 0
- Write operation: a high current to change orientation
- Read operation: a low current to sense orientation
6-input MRAM-based Lookup Table [Zhao11MR]
Experimental setup
- TSMC 65 nm for SRAM-LUT
- STT-MRAM model [Bishnoi14ISQED]
- Without power gating

In SRAM-FPGA
- Static power of configuration bit is 38%
- No power-gating is applied
 - Due to volatile contents of SRAM
 - Reconfiguration required at wakeup time

MRAM-FPGA
- Significantly smaller leakage power
 - Only in CMOS-based parts
- Non-volatile → could be power gated
 - Reconfiguration is not required

Energy Efficient Partitioning of Dynamic Reconfigurable MRAM-FPGAs
Reconfiguration energy of MRAM-FPGA is 8X higher than SRAM-FPGA
- Higher write power
- Higher write latency

Similar results by [Zhao11GLSVLSI]

Reconfiguration energy is new concern in dynamic reconfigurable MRAM-FPGAs
- New partitioning technique needed

Energy Efficient Partitioning of Dynamic Reconfigurable MRAM-FPGAs
Outline

- MRAM-FPGA
- Proposed Partitioning Technique
- Experimental Results
- Conclusions
Main Idea

- Order of execution matters

- DPR with power-gating
 - SRAM-FPGA → Both 3 reconfiguration
 - MRAM-FPGA → a) 3 b) 2
 - Non-volatile

- Proposed partitioning technique
 - Input: FPGA size and hardware tasks
 - Objective: Minimize reconfiguration energy
 → Minimizing overall energy
Classification of Timing Conflicts

- Active-active conflict → cannot be mapped to the same partition

- Active-idle conflict → content update in each power-off cycle

- No conflict → only one reconfiguration
Energy Reduction Objective

- Energy of FPGA with power gating capability

\[\sum_{\text{for each HWT}} \text{Active energy}_{HWTi} + \text{Power gating energy}_{HWTi} + \# \text{ of reconf.}_{HWTi} \times \text{reconfig. energy}_{HWTi} \]

- Active energy: dynamic and leakage energy
- Power gating energy: wakeup and power-off overheads
Proposed Partitioning Technique

- Graph-based representation adapted from [He12ICCAD]
- Constructing exclusion graph according to timing conflicts
 - Vertex → hardware task
 - Edge → active-active conflict between vertices
 - Cannot be mapped to the same partition
Proposed Partitioning Technique

Constructing intersection graph → independent set of exclusion graph

- Independent set: subset of vertices with no adjacent vertices
- Vertex → partitioning candidate
- Edge → two partitions have common tasks
 - Cannot be simultaneously included in final result

Exclusion graph

- **Vertex**
 - **Partitioning candidate**
- **Edges**
 - Two partitions have common tasks
 - **Cannot be simultaneously included in final result**

Intersection graph

- **Nodes**
 - **P1, P2, P3, P4, P5, P6, P7**

Execution schedule

- **Time**:
 - i
 - i+1
 - i+2
 - i+3
 - i+4

- **Tasks**
 - T1, T2, T3, T4, T5

Energy Efficient Partitioning of Dynamic Reconfigurable MRAM-FPGAs
Proposed Partitioning Technique

- Weighting intersection graph
 - Based on optimization objective → i.e. reconfiguration energy reduction
 - Weight of partition $P = \{T_n, T_{n+1}, ..., T_m\}$ computed as $W_P = R \times \max_{n \leq i \leq m} a_i$
 - R is # of reconfigurations → dependant on execution schedule
 - a_i is area of T_i → dependant on partitioning strategy
Proposed Partitioning Technique

Obtaining final solution
- By min weight maximal Independent set
 - Over all possible solutions which fit inside FPGA

Execution schedule

Exclusion graph

Intersection graph

Energy Efficient Partitioning of Dynamic Reconfigurable MRAM-FPGAs
Outline

- MRAM-FPGA
- Proposed Partitioning Technique
- Experimental Results
- Conclusions
Experimental Setup

- Experimental setup for evaluating 32-bit configuration frame
 - TSMC 65 nm for SRAM-LUT
 - STT-MRAM model [Bishnoi14ISQED]

- Set of commonly used multimedia, cryptography, and scientific modules
 - adpcm, AES, blowfish, dfsin, dfvin, dfadd, dfmul, Mpeg4

- Test cases: 7 synthetic (TC1 … TC7) and one real world (Mpeg4)
Reconfiguration Energy Improvement

- For five points
 - Min: minimum area partitioning [He12ICCAD]
 - Max: fully static implementation
 - and three points in between
Opportunities for Power Gating

- Time
- Active
- Idle
- Reconfig.
- Active

- Without avoiding active-idle conflicts
- With avoiding active-idle conflicts

![Graph showing improvements in power gating time vs. average task frequency.](image)

- Average Task Frequency (#Execution per 10000 seconds)
- Improvements in Power Gating Time (%)
Outline

- MRAM-FPGA
- Proposed Partitioning Technique
- Experimental Results
- Conclusions
Conclusions

- Reconfiguration energy is a major challenge of DPR in MRAM-FPGA
 - Due to high write energy of MRAM

- An energy-efficient partitioning technique for MRAM-FPGA presented
 - Reducing number of reconfigured bits \rightarrow less reconfiguration energy

- Experimental results
 - 25% additional area \rightarrow 68.1% less reconfiguration energy
 - ~12% improvement in power gating time
Why new partitioning technique?

- Dynamic reconfigurable MRAM-FPGAs
 - Possibility of power gating without data loss
 - High reconfiguration energy
- Different concerns → New partitioning technique needed