Data-Triggered Breakpoint for In-Circuit Debug without Re-implementation

* Yutaka Tamiya
* Yoshinori Tomita
* Toshiyuki Ichiba
* Kaoru Kawamura

Fujitsu Laboratories Ltd., Japan

Implemented with Simple HW
Linearity of CRC
(Immediate Redundancy Check)

Realize Fast & Flexible Debug
At-Speed & Realtime
With Small Area Overhead
No Re-implementation

Background
- Problems of Post-Silicon Debug
- Logical Bugs remain even after Pre-Silicon.
- Impractical Simulation with exhaustive Test Patterns.
- Needs much Efforts to Detect & Fix Bugs.
- Poor Controllability & Observability
- Takes Long TAT with In-Circuit Logic Analyzer: ChipScope, SignalTap II, etc.
- HW re-implementation required on changing Breakpoints.

Growth of Hardware: Size, Speed, Func.
- Ethernet=40~100Gbps, PCIe=5~8Gbps/Lane
- Almost all systems consist of HW & SW

Algorithms to Detect Data Sequences
- Divide Data Seq, S (arbitrary length of n) into
 Sub-Seq's: S1, S2, ..., Sr (Len of Sub-Seq's: n1, n2, ..., nr)
 S = S1 & S2 & ... & Sr
- S1: The 1st Sub-Sequence included in the 1st Word.
 → ①CRC Difference Detection
- Sk's: The 2nd and Latter Sub-Sequence's (k=2,3, ...,r) with arbitrary Lengths n2, ..., nr.
 → ②Absolute CRC Detection.

CRC Diff Detection for S1
Try to detect S1 in every word:

Abs CRC Detection for S2
S2, following S1, can be detected by:

Rapid Debug Cycle

Results of Resource Usage
- Synthesized with Xilinx Kintex7 @Clock 250MHz by Xilinx ISE Tool.
- Small Area Overheads with 4 or less of CRC Width.
- Data Seq = 595 MB JPEG stream (as Random Data)

Results of False Positives
- False Positives can be reduced by CRC-Width, # of Sub-Sequence, and Word Width.
- Data Seq = 595 MB JPEG stream (as Random Data)
- A 64-byte “SOS” sequence to be detected

Future Work
- Investigate more complex Breakpoint Conditions w/ closer Collaboration between Debugger(SW) & Debug Module(HW)
- Combine our breakpoints w/ other Observability Technique and Realize a practical Debug Tool.